‘STING’ protein’s efforts to clean up brain cell damage may speed Parkinson’s disease progress

In studies with mouse and human tissue, as well as live mice, Johns Hopkins Medicine researchers report that a snag in the normal process of cleaning up broken DNA in brain cells may hasten the progression of Parkinson's disease. Specifically, the researchers found that a protein dubbed "STING" responds to cleanup signals in brain cells damaged by Parkinson's disease by creating a cycle of inflammation that may accelerate the disease's progression.
In studies with mouse and human tissue, as well as live mice, Johns Hopkins Medicine researchers report that a snag in the normal process of cleaning up broken DNA in brain cells may hasten the progression of Parkinson’s disease. Specifically, the researchers found that a protein dubbed «STING» responds to cleanup signals in brain cells damaged by Parkinson’s disease by creating a cycle of inflammation that may accelerate the disease’s progression.