An implantable brain-computer interface (BCI) has proven to be effective in the field of sensory and motor function restoration and in the treatment of neurological disorders. Using a BCI recording system, we can transform current methods of human interaction with machines and the environment, especially to help those with cognitive and mobility disabilities regain mobility and reintegrate into society. However, most reported work has focused on a simple aspect of the whole system, such as electrodes, circuits, or data transmission, and only a very small percentage of systems are wireless. «A miniature, lightweight, wireless, implantable microsystem is key to realizing long-term, real-time, and stable monitoring on freely moving animals or humans in their natural conditions,» Bowen Ji says.
Wireless neural recording system is a significant trend for brain-computer interface in the next decade
An implantable brain-computer interface (BCI) has proven to be effective in the field of sensory and motor function restoration and in the treatment of neurological disorders. Using a BCI recording system, we can transform current methods of human interaction with machines and the environment, especially to help those with cognitive and mobility disabilities regain mobility and reintegrate into society. However, most reported work has focused on a simple aspect of the whole system, such as electrodes, circuits, or data transmission, and only a very small percentage of systems are wireless. "A miniature, lightweight, wireless, implantable microsystem is key to realizing long-term, real-time, and stable monitoring on freely moving animals or humans in their natural conditions," Bowen Ji says.